Ultralow Noise, High Speed, Precision Op Amp (A_{VCL}≥5) **AD OP-37** #### FEATURES Ultralow Noise: 80nV p-p (0.1Hz to 10Hz), 3nV/√Hz at 1kHz High Speed: 17V/µs High Gain Bandwidth Product: 63MHz Ultralow Offset Voltage Drift: 0.2µV/°C High Offset Stability Over Time: 0.2µV/month Low Offset Voltage: 10μV High CMRR: 126dB Over ±11V Input Voltage Range Fits OP-07, OP-05, OP-06, 5534, LH0044, 5130, 3510, 725, 714 and 741 Sockets in Gains ≥ 5 Military Grade and Plus Parts Available 8-Pin Plastic Mini-DIP, Cerdip or TO-99 Hermetic Metal Can Available in Wafer-Trimmed Chip Form #### PRODUCT DESCRIPTION The AD OP-37 offers the combined features of high precision, ultralow noise and high speed in a monolithic bipolar operational amplifier. High speed, accurate amplification of very low level signals, where inherent device noise can be the limiting factor, is attainable with the AD OP-37 in applications requiring gains greater than or equal to five. This instrumenation grade op amp features industry standard dc performance; typical input offset voltages of $10\mu V$ and typical input offset voltage temperature coefficients of $0.2\mu V$ /°C. The super low input voltage noise performance of the AD OP-37 is characterized by an e_n p-p (typ) of 80nV (0.1Hz to 10Hz), an e_n (typ) of $3.0nV/\sqrt{Hz}$ (at 1kHz) and a 1/f noise corner frequency of 2.7Hz. High speed performance is assured by a typical $17V/\mu s$ slew rate and a typical 63MHz gain bandwidth product. Long-term stability is guaranteed by an input offset voltage drift specification of $0.2\mu V$ /month. Source resistance related input errors with the AD OP-37 are minimized by a low input bias current of $\pm 10 \text{nA}$ (typ) and an input offset current of 7 nA (typ). An input bias current cancellation circuit restricts bias and offset currents over the extended temperature range to $\pm 20 \text{nA}$ (typ) and 15 nA (typ), respectively. Other factors inducing input referred errors such as power supply variations and common-mode voltages are attenuated by a PSRR and CMRR of 120dB. #### **AD OP-37 CONNECTION DIAGRAMS** TO-99 (H) Package OFFSET NULL 1 9 7 V+ INVERTING 2 9 0 OUTPUT NONINVERTING 3 9 NC Plastic Mini-DIP (N) Package and Cerdip (Q) Package The AD OP-37 is available in six performance grades. The AD OP-37E, AD OP-37F and AD OP-37G are specified for operation over the -25°C to +85°C temperature range, while the AD OP-37A, AD OP-37B and AD OP-37C are specified for -55°C to +125°C operation. All devices are available in either the TO-99 hermetically scaled metal cans or the hermetically scaled cerdip packages, while the industrial grades are also available in #### PRODUCT HIGHLIGHTS plastic mini-DIPs. - High speed accurate amplification (gains ≥ 5) of very low level low frequency voltage inputs is enhanced by a high gain bandwidth product and ultralow input voltage noise. - The AD OP-37 maintains high dc accuracy over an extended temperature range due to ultralow offset voltage, offset voltage drift and input bias current. - Internal frequency compensation, factory adjusted offset voltage and full device protection eliminate the need for additional components. Circuit size and complexity are reduced while reliability is increased. - Long-term stability and accuracy is assured with low offset voltage drift over time. - Input referred errors are greatly reduced by superior commonmode and power supply rejection characteristics. - Monolithic construction along with advanced circuit design and processing techniques result in low cost. | Model | | AD OP-37G | | | AD OP-3 | 7 F | AD OP-37E | | 7E | | |---|--------------------------------------|--|--------------------------------|--|----------------------------|--|---------------------------|----------------------------|--------------------------------|---------------------------| | Parameter | Symbol | Min | Тур | Max | Min | Typ | Max | Min | Тур | Max | | OPEN LOOP GAIN | A _{VO} | 700
400
200
450 | 1,500
1,500
500
1,000 | | 1,000
800
250
700 | 1,800
1,500
700
1,300 | | 1,000
800
250
750 | 1,800
1,500
700
1,500 | | | OUTPUT CHARACTERISTICS
Voltage Swing | v _o | ±11.5
±10.0
±11.0 | ± 13.5
± 11.5
± 13.3 | | ±12.0
±10.0
±11.4 | ± 13.8
± 11.5
± 13.5 | | ± 12.0
± 10.0
± 11.7 | ± 13.8
± 11.5
± 13.6 | | | Open-Loop Output Resistance | R_{O} | | 70 | | | 70 | | | 70 | | | FREQUENCY RESPONSE Gain Bandwidth Product | GBW | 4 5 | 63
40 | | 4 5 | 63
40 | | 45 | 63
40 | | | Slew Rate | SR | 11 | 17 | | 11 | 17 | | 11 | 17 | | | INPUT OFFSET VOLTAGE Initial Average Drift | V _{OS} | | 30
55
0.4 | 100
220
1.8 | | 20
40
0.3 | 60
140
1.3 | | 10
20
0.2 | 25
60
0.6 | | Long-Term Stability Adjustment Range | V _{OS} /Time | | 0.4
± 4.0 | 2.0 | | 0.3
±4.0 | 1.5 | | 0.2
± 4.0 | 1.0 | | INPUT BIAS CURRENT Initial | I _B | | ± 15
± 25 | ± 80
± 150 | | ± 12
± 18 | ± 55
± 95 | | ± 10
± 14 | ± 40
± 60 | | INPUT OFFSET CURRENT Initial | I _{OS} | | 12 20 | 75
135 | | 9 | 50
85 | | 7
10 | 35
50 | | INPUT NOISE | | | | 133 | | | - 0, | | | | | Voltage
Voltage Density | e _n p-p
e _n | | 0.09
3.8
3.3
3.2 | 0.25
8.0
5.6
4.5 | | 0.08
3.5
3.1
3.0 | 0.18
5.5
4.5
3.8 | | 0.08
3.5
3.1
3.0 | 0.18
5.5
4.5
3.8 | | Current Density | i _n | | 1.7
1.0
0.4 | -
0.6 | | 1.7
1.0
0.4 | 4.0
2.3
0.6 | <u>.</u> | 1.7
1.0
0.4 | 4.0
2.3
0.6 | | INPUT VOLTAGE RANGE Common Mode Common-Mode Rejection | CMVR | ±11.0
±10.5 | ± 12.3
± 11.8 | | ±11.0
±10.5 | ± 12.3
± 11.8 | | ±11.0
±10.5 | ± 12.3
± 11.8 | | | Ratio | CMRR | 100
96 | 120
118 | | 106
102 | 123
121 | | 114 | 126
124 | | | INPUT RESISTANCE Differential | R _{IN} | 0.8 | 4 | | 1.2 | 5 | | 1.5 | 6 | | | Common Mode | RINGM | ļ | 2 | | | 2.5 | | | 3 | | | POWER SUPPLY Rated Performance Operating Current, Quiescent Rejection | I _Q
PSR | | ± 15
± (4–18)
3.3
2 | 5.6
20 | | ± 15
± (4–18
3.0 |)
4.6
10 | | ± 15
± (4–18
3.0 |)
4.6
10 | | Power Consumption | Pu | | 2 | 32
170 | | 2
90 | 16
140 |) | 2
90 | 15
140 | | OPERATING TEMPERATURE | RANGE | | | | | | | | | | | PACKAGE OPTIONS ³ Plastic Mini-DIP (N-8) Cerdip (Q-8) TO-99 (H-08) Cand G Grade Chips Also Available | T _{min} , T _{max} | AD OP-37GN
AD OP-37GQ
AD OP-37GH | | AD OP-37FN
AD OP-37FQ
AD OP-37FH | | AD OP-37EN
AD OP-37EQ
AD OP-37EH | | | | | NOTES Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. A and E grades are guaranteed fully warmed up. Long-Term Input Offset Voltage Stability refers to the average trend line of Vos vs. time after the first 30 days. See Section 20 for package outline information. Specifications subject to change without notice. 2-398 OPERATIONAL AMPLIFIERS | AD OP-37C | | AD OP-37B | | | AD OP-37A | | | Conditions | Units | | |-----------|------------|-----------|--------------------------|--------------|-----------|--------------------------|---------|------------|---|------------| | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | | | | 700 | 1,500 | - | 1,000 | 1,800 | | 1,000 | 1,800 | | $R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$ | V/mV | | 400 | 1,500 | | 800 | 1,500 | | 800 | 1,500 | | $R_L \ge 1 k\Omega$, $V_{OUT} = \pm 10 V$ | V/mV | | 200 | 500 | | 250 | 7 0 0 | | 250 | 700 | | $R_1 = 600\Omega$, $V_{OUT} = \pm 1V$, $V_S = \pm 4V$ | V/mV | | 300 | 800 | | 500 | 1,000 | | 600 | 1,200 | | $R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$, $T_a = \min$ to max | V/mV | | ± 11.5 | ± 13.5 | | ± 12.0 | ± 13.8 | | ± 12.0 | ± 13.8 | | R _L ≥2kΩ | v | | ± 10.0 | ± 11.5 | | ± 10.0 | ± 11.5 | | ± 10.0 | ± 11.5 | | R _L ≥600Ω | ĺv | | ± 10.5 | ± 13.0 | | ±11.0 | ± 13.2 | | ±11.5 | ± 13.5 | | $R_1 \ge 2k\Omega$, $T_a = \min to \max$ | v | | | 70 | | | 70 | | | 70 | | $I_{OUT} = 0A$, $V_{OUT} = 0V$ | Ω | | 45 | <i>(</i>) | | 45 | 63 | | 45 | 63 | | $f_0 = 10kHz$ | MHz | | 45 | 63 | | 1 | 40 | | 1 | 40 | | $f_0 = 10$ MHz | MHz | | -
11 | 63
17 | | -
11 | 17 | | -
11 | 17 | | R _L ≥2kΩ | V/µs | | | | | | •• | | | | | | | | | 30 | 100 | | 20 | 60 | | 10 | 25 | (Note 1) | μV | | | 70 | 300 | | 50 | 200 | | 30 | 60 | $T_a = min to max$ | μV | | | 0.4 | 1.8 | | 0.3 | 1.3 | | 0.2 | 0.6 | $T_a = \min to \max$ | μ٧/℃ | | | 0.4 | 2.0 | | 0.3 | 1.5 | | 0.2 | 1.0 | (Note 2) | μV/mon1 | | | ± 4.0 | | | ±4.0 | | | ± 4.0 | | $R_p = 10k\Omega$ | mV | | | ± 15 | ± 80 | | ± 12 | ± 55 | | ± 10 | ± 40 | | nA | | | ± 35 | ± 150 | | ± 28 | ± 95 | | ± 20 | ± 60 | T _e = min to max | nA | | | 12 | 75 | | 9 | 50 | | 7 | 35 | | n A | | | 30 | 135 | | 22 | 85 | | 15 | 50 | T _a = min to max | пA | | | 0.09 | 0.25 | | 0.08 | 0.18 | | 0.08 | 0.18 | 0.1H2 to 10Hz | μV p-p | | | 3.8 | 8.0 | 1 | 3.5 | 5.5 | ŀ | 3.5 | 5.5 | $f_0 = 10Hz$ | nV/√Hz | | | 3.3 | 5.6 | | 3.1 | 4.5 | | 3.1 | 4.5 | $f_0 = 30$ Hz | nV/√Hz | | | 3.2 | 4.5 | | 3.0 | 3.8 | | 3.0 | 3.8 | $f_0 = 1000$ Hz | nV/√Hz | | | 1.7 | - | | 1.7 | 4.0 | | 1.7 | 4.0 | $f_0 = 10$ Hz | pA/√Hz | | | 1.0 | _ | | 1.0 | 2.3 | į | 1.0 | 2.3 | $f_0 = 30$ Hz | pA/√Hz | | | 0.4 | 0.6 | | 0.4 | 0.6 | | 0.4 | 0.6 | f _o = 1000Hz | pA/√Hz | | ±11.0 | ± 12.3 | | ± 11.0 | ± 12.3 | | ±11.0 | ± 12.3 | | | v | | ± 10.2 | ± 11.5 | | ± 10.3 | ± 11.5 | | ± 10.3 | ±11.5 | | T _a = min to max | v | | 100 | 120 | | 106 | 123 | | 114 | 126 | | $V_{CM} = \pm 11V$ | dB | | 94 | 116 | | 100 | 119 | | 108 | 122 | | $V_{CM} = \pm 10V$, $T_a = \min to max$ | dB | | 0.8 | 4 | | 1.2 | 5 | | 1.5 | 6 | | | MΩ | | | 2 | | | 2.5 | | | 3 | | | GΩ | | | ± 15 | | ĺ | ± 15 | | | ± 15 | | | v | | | ± (4–18 | 3) | 1 | ± (4-18 | i) | | ± (4-18 | () | | v | | | 3.3 | ,
5.6 | | 3.0 | 4.6 | | 3.0 | 4.6 | $V_s = \pm 15V$ | mA | | | 2 | 20 | | 1 | 10 | | 1 | 10 | $V_S = \pm 4V \text{ to } \pm 18V$ | μV/V | | | 4 | 51 | | 2 | 20 | 1 | 2 | 16 | $V_S = \pm 4.5 \text{V to } \pm 18 \text{V}, T_\bullet = \text{min to max}$ | $\mu V/V$ | | | 100 | 170 | | 90 | 140 | <u> </u> | 90 | 140 | V _{OUT} = 0V | mW | | - 55 | | + 125 | - 55 | | + 125 | - 55 | | + 125 | | ℃ | | | | | | | | | | | | | | | AD OR 3 | 700 | 1000000 | | | | ADOD 2 | 740 | | | | | AD OP-3 | | AD OP-37BQ
AD OP-37BH | | | AD OP-37AQ
AD OP-37AH | | | i | | | | AD OP-3 | /cn | I | VD OL-2 | / DIL | I | VDOL-2 | /AII | 1 | 1 | Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units. #### ABSOLUTE MAXIMUM RATINGS | ABSOLUTE WELAMIUM RATINGS | Differential input Current (Note 2) ± 25mA | |--|--| | Supply Voltage ± 18V | Storage Temperature Range65°C to +150°C | | Internal Power Dissipation (Note 1) 500mW | Operating Temperature Range | | Input Voltage $\pm V_S$ | AD OP-37A, AD OP-37B, AD OP-37C55℃ to +125℃ | | Output Short Circuit Duration Indefinite | AD OP-37E, AD OP-37F, AD OP-37G -25°C to +85°C | | Differential Input Voltage (Note 2) ±0.7V | Lead Temperature Range (Soldering 60sec) 300°C | | Differential input Voltage (Note 2) ± 0.7V | Lead Temperature Range (Soldering 60sec) 300°C | | Differential Input Current (Note 2) ± 2 | 5mA | |--|-----| | Storage Temperature Range65℃ to +1 | | | Operating Temperature Range | | | AD OP-37A, AD OP-37B, AD OP-37C55℃ to +1 | 25℃ | | AD OP-37E, AD OP-37F, AD OP-37G25℃ to + | | #### NOTES: Note 1: Maximum package power dissipation vs. ambient temperature. | Package Type | Maximum Ambient
Temperature for Rating | Derate Above Maximum Ambient Temperature | |--------------|---|--| | TO-99(H) | 80°C | 7.1m₩/°C | | Mini-DIP(N) | 36℃ | 5.6m₩/°C | | Cerdip(O) | 75°C | 6.7m\\%'/°C | Note 2: The AD OP-37's inputs are protected by back-to-back diodes. To achieve low noise current limiting resistors could not be used. If the differential input voltage exceeds ± 0.7V, the input current should be limited to 25mA. #### CHIP DIMENSIONS AND BONDING DIAGRAM Contact factory for latest dimensions. Dimensions shown in inches and (mm). ### AD OP-37 ORDERING GUIDE¹ | ID 01-37 ORDERING GOIDE | | | | | | | |-------------------------|---------------------------------|---------------------------|----------------------------|-----------------------------|--|--| | Model | Package
Options ² | Temperature
Range (°C) | Max Initial
Offset (μV) | Max Offset
Drift (μV/°C) | | | | AD OP-37GH | TO-99 | - 25 to + 85 | 100 | 1.8 | | | | AD OP-37GN | Mini-DIP | - 25 to +85 | 100 | 1.8 | | | | AD OP-37GQ | Cerdip | - 25 to +85 | 100 | 1.8 | | | | AD OP-37FH | TO-99 | - 25 to +85 | 60 | 1.3 | | | | AD OP-37FN | Mini-DIP | - 25 to + 85 | 60 | 1.3 | | | | AD OP-37FQ | Cerdip | -25 to +85 | 60 | 1.3 | | | | AD OP-37EH | TO-99 | -25 to +85 | 25 | 0.6 | | | | AD OP-37EN | Mini-DIP | - 25 to +85 | 25 | 0.6 | | | | AD OP-37EQ | Cerdip | - 25 to + 85 | 25 | 0.6 | | | | AD OP-37CH | TO-99 | - 55 to + 125 | 100 | 1.8 | | | | AD OP-37CQ | Cerdip | - 55 to + 125 | 100 | 1.8 | | | | AD OP-37BH | TO-99 | - 55 to + 125 | 60 | 1.3 | | | | AD OP-37BQ | Cerdip | - 55 to + 125 | 60 | 1.3 | | | | AD OP-37AH | TO-99 | - 55 to + 125 | 25 | 0.6 | | | | AD OP-37AQ | Cerdip | - 55 to + 125 | 25 | 0.6 | | | | | | | | | | | NOTES ¹C and G grade chips also available. ²See Section 20 for package outline information. #### APPLICATION NOTES FOR THE AD OP-37 The AD OP-37 can be used in the sockets of many of the popular precision bipolar input operational amplifiers on the market. Elimination of external frequency compensation or nulling circuitry may be possible in many cases. In 741 replacement situations, if nulling has been implemented, it should be modified or removed for correct AD OP-37 performance. In applications where the initial factory adjusted input offset voltage provides insufficient accuracy, further offset trimming can be accomplished with the resistor network shown in Figure 1. The adjustment range attainable using a $10k\Omega$ potentiometer will be $\pm 4mV$. If a smaller adjustment range is required, the sensitivity of the nulling can be increased by using a smaller potentiometer in series with fixed resistor(s). For example, a $1k\Omega$ pot in series with two $4.7k\Omega$ resistors will yield a $\pm 280\mu V$ range. Figure 1. Optional Offset Nulling Circuit Zeroing the initial offset with potentiometers other than $10k\Omega$, but between $1k\Omega$ and $1M\Omega$, will introduce an additional input offset voltage temperature drift error of from 0.1 to $0.2\mu V/^{\circ}C$. Additionally, by intentionally trimming in a dc level shift a voltage dependent offset drift will be created. It will be approximately the input offset voltage at 25°C divided by 300 (in $\mu V/^{\circ}C$). Parasitic thermocouple EMF's can be generated where dissimilar metals meet the contacts to the input terminals of the AD OP-37. These temperature dependent voltages can manifest themselves as drift type errors. Optimized temperature performance will be obtained when both contacts are maintained at the same temperature. Although the AD OP-37 features high-power supply rejection, the effects of noise on the power supplies may be minimized by bypassing the power supplies as close to Pins 4 and 7 of the AD OP-37 as possible, to load ground with a good quality $0.01 \mu F$ ceramic capacitor as shown in Figure 1. High closed loop gain and excellent linearity can be achieved by operating the AD OP-37 within an output current range of ± 10 mA. Minimizing output current will provide the highest linearity. Figure 2. Burn-In Circuit #### **CAUTION: NOISE MEASUREMENTS** Precise measurement of the extremely low input noise associated with the AD OP-37 is a difficult task. In order to observe the rated noise in the 0.1Hz to 10Hz frequency range the following cautions should be exercised. - (1) The test time to measure 0.1Hz to 10Hz noise should not exceed 10 seconds. As shown in the noise test frequency response plot in this data sheet the 0.1Hz corner is only defined by a single zero. A test time of 10 seconds acts as an additional zero to eliminate noise contributions from frequencies lower than 0.1Hz. - (2) Warm-up for a least five minutes will eliminate temperature induced effects. During the first few minutes the offset voltage typically increases $4\mu V$. In a 10 second measurement interval prior to temperature stabilization the reading could include several nanovolts of warm-up offset error in addition to the noise. - (3) For reasons similar to (2) the device under test should be well shielded from air currents or other heat sinks to eliminate the possibility of temperature changes over time invalidating the measurements. Sudden motion in the vicinity or physical contact with the package can also increase the observed noise. An input voltage noise spectral density test is recommended when measuring noise on a large number of units. Because the 1/f noise corner frequency is around 3Hz, a 1kHz noise voltage density measurement combined with a 0.1Hz to 10Hz peak-to-peak noise reading will guarantee 1/f and white noise performance over the rated frequency spectrum. # Typical Performance Curves (@ $T_A = +25$ °C, $V_S = \pm 15$ V) Input Voltage Noise Spectral Density Comparison of Op Amp Input Voltage Noise Spectrums Input Wideband Noise vs. Bandwidth (0.1Hz to Frequency Indicated) 0 100e II OONEE - MARK Input Voltage Noise vs. Temperature Input Voltage Noise vs. Supply Voltage Input Current Noise Spectral Density Total Noise vs. Source Impedance 0.1Hz to 10Hz Noise Test Frequency Response 0.1Hz to 10Hz p-p Voltage Noise NOTE: ALL CAPACITORS MUST BE NONPOLARIZED 0.1Hz to 10Hz Noise Test Bandpass Filter (Voltage Gain = 50,000) Input Offset Voltage Turn-On Drift vs. Warm-Up Time Input Offset Current vs. Temperature Slew Rate, Gain Bandwidth Product and Phase Margin vs. Temperature Undistorted Output Voltage Swing vs. Frequency Long Term Offset Stability @ Temperature Open-Loop Frequency Response Open-Loop Gain vs. Supply Voltage Output Swing vs. Load Resistance Input Bias Current vs. Temperature Open-Loop Gain and Phase Shift vs. Frequency Open-Loop Gain vs. Load Resistance Output Short Circuit Current vs. Time Small Signal Overshoot vs. Capacitive Load Power Supply Rejection Ratio vs. Frequency CMRR vs. Frequency Large Signal Pulse Response $(A_V = 5, R_L = 2k)$ Supply Current vs. Supply Voltage Slew Rate vs. Resistive Load Small Signal Pulse Response $(A_V = 5, R_L = 2k)$ Common-Mode Input Range vs. Supply Voltage Slew Rate vs. Supply Voltage